This section covers the following topics:

- Define a sequence of numbers
- Write the first several terms of a sequence
- Determine a sequence from a pattern

Define a Sequence of Numbers

- In the English language - a sequence can be interpreted as "a sequence of events" that are first, second, third, etcetera.

Definition: Sequence and Terms of a sequence

A sequence is a function whose domain is the set of positive integers.
Each number in the ordered list are called terms of a sequence.

(a) $f(x)=\frac{1}{x}, x>0$

(b) $f(n)=\frac{1}{n}, n$ a positive integer

Write the first several terms of a sequence

Example 1: Represent the terms of the sequence defined by $f(n)=\frac{1}{n^{\prime}} \quad$ where n is a positive integer.

$$
\begin{aligned}
& f(1)=\frac{1}{(1)}=1 \\
& f(2)=\frac{1}{(2)}=\frac{1}{2} \\
& f(3)=\frac{1}{3}
\end{aligned}
$$

$$
\begin{gathered}
f(4)=\frac{1}{4} \\
\vdots \\
f(n)=\frac{1}{n}
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\{ \\
o
\end{array}\right.
$$

Notation:
We often write the terms of the sequence in terms of $a_{1}, a_{2}, a_{3}, \ldots a_{n}$

In the above example, we would have the following:

$$
a_{n}=\frac{1}{n} \quad a_{1}=1, \quad a_{2}=\frac{1}{2}, a_{3}=\frac{1}{3}, a_{4}=\frac{1}{4}, \ldots
$$

Definition: General Term of a sequence

The general term of a sequence is the formula for a given sequence.

Example 2: The sequence whose $n t h$ term is $b_{n}=\left(\frac{1}{2}\right)^{n}$ may be represented as

$$
\begin{aligned}
& b_{n}=\left(\frac{1}{2}\right)^{n} \\
& b_{1}=\left(\frac{1}{2}\right)^{1}=\frac{1}{2} \\
& b_{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\
& b_{3}=\left(\frac{1}{2}\right)^{3}=\frac{1}{8}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { Example 3: Write the first five terms of the following sequences } \\
\begin{array}{l}
\text { a. }\left\{s_{n}\right\}=\left\{n^{2}+1\right\} \\
S_{1}=(1)^{2}+1=2
\end{array} \quad\left\{S_{n}\right\}=\{2,5,10,17,26, \ldots, n+1, \ldots\} \\
S_{2}=(2)^{2}+1=5 \\
S_{3}=10 \\
S_{4}=17
\end{array}\right\}
$$

b. $\quad\left\{a_{n}\right\}=\left\{\frac{2 n+1}{2 n}\right\}$

$$
\begin{aligned}
& s_{4}=17 \\
& s_{5}=26 \\
& a_{1}=3 / 2 \\
& a_{2}=5 / 4 \\
& a_{3}=7 / 6 \\
& a_{4}=9 / 8 \\
& a_{5}=11 / 10
\end{aligned}
$$

$$
\left\{\frac{3}{2}, \frac{5}{4}, \frac{7}{6}, \frac{9}{8}, \frac{11}{10}\right\} 1^{\text {st }} \frac{5}{\text { terms }}
$$

c. $\left\{b_{n}\right\}=\left\{\frac{n^{2}}{2^{n}}\right\}$

$$
\begin{array}{ll}
b_{1}=\frac{1}{2} & b_{3}=\frac{9}{8} \\
b_{2}=1 & b_{4}=1
\end{array}
$$

$$
\frac{\left\{\frac{1}{2}, 1, \frac{9}{8}, 1, \frac{25}{32}\right\}}{1 \text { st five terms }}
$$

d. $\left\{s_{n}\right\}=\left\{(-1)^{n-1}\left(\frac{n}{2 n-1}\right)\right\}$

Determine a sequence from a pattern

Example 4: The given pattern continues. Write down the $n^{\text {th }}$ term of the sequence $\left\{a_{n}\right\}$ suggested by the pattern
a. $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$

$$
\begin{aligned}
& \quad \text { a. } 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \\
& a_{n}=\left(\frac{1}{2}\right)^{n-1}, \quad n=1,2,3, \ldots \text { or } n \in \mathbb{Z}^{+}
\end{aligned}
$$

$$
\text { OR } a_{n}=\left(\frac{1}{2}\right)^{n}, n=0,1,2,3, \ldots
$$

b. $1,-1,1,-1,1,-1, \ldots$

$$
a_{n}=(-1)^{n+1}, n \in \mathbb{Z}^{+}
$$

c. $1,-2,3,-4,5,-6, \ldots$

$$
a_{n}=(-1)^{n+1}(n)
$$

d. $1, \frac{1}{2}, 3, \frac{1}{4}, 5, \frac{1}{6}, 7, \frac{1}{8}, \ldots$

